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ports at the molecular level. These two terms are treated
separately and then combined to form the resulting discret-Conventional exponential difference schemes may yield accurate

and stable solutions for the one-dimensional, source-free convec- ized expression in the conventional finite difference formu-
tion–diffusion equation. However, its accuracy will be deteriorated lation. For the diffusion term, the central difference scheme
in the presence of a nonconstant source term or in multidimensional (CD) can provide an accurate and stable discretized repre-
problems. Attempts are made to increase the accuracy of exponen-

sentation. This central difference expression has a compacttial difference schemes. First, we propose an exponential difference
three-point supported stencil in one dimension and yieldsscheme that retains second-order accuracy in the presence of a

source term or in multidimensional situations. Mathematical analy- second-order accuracy in space. The resulting matrix equa-
sis and numerical experiments are performed to validate this tion is diagonally dominant and can be solved by simple
scheme. Second, a local particular solution method is introduced iterative methods. With this diagonal dominance property,
to raise the solution accuracy for problems with a source term. This

bounded solutions can be easily achieved. Similar centralmethod locally transforms the original problem to a source-free
difference formulation can be applied for the convectionone, to which an accurate solution can be obtained. Performance

of this process is verified by numerical calculations of some test term and the resulting difference equation can also be
problems. Third, two skew exponential difference schemes are pro- proven to be second-order accurate. However, if the flow
posed to raise the solution accuracy in multidimensional problems: velocity is quite large or the grid spacing is not suitably
one is designed to be free of numerical diffusion and the other

refined, nonphysical spurious oscillation can be found inwith minimum numerical diffusion to ensure solution monotonicity.
the resulting solution which reflects erroneous processesComparisons with existing schemes are performed by conducting

numerical experiments on several test problems. Finally, a simple [1]. This phenomenon is designated as the boundedness
blending procedure of these two schemes is suggested to yield problem for the occurrence of an oscillatory solution.
an accurate and stable representation of the convection–diffusion Moreover, difficulties in the convergence may occur if the
problem in all possible situations, with or without solution

system of equations are solved by an iterative method, suchdiscontinuities. Q 1996 Academic Press, Inc.
as Gauss–Seidel or alternating direction implicit (ADI),
unless heavy relaxation between two successive iterations
is applied [2]. This phenomenon can be physically attrib-1. INTRODUCTION
uted to the symmetrical influence weighting of neighboring

In practical engineering applications, convection– points in the central difference scheme for the diffusion
diffusion equations are generally employed to describe term, which obviously violates the unsymmetrical nature
the transport processes involving fluid motion. With the of the convection operator. The diagonal dominance in
progress in computer power, the differential convection– the resulting matrix equations is no longer satisfied since
diffusion equations can be analytically studied by pursuing the downstream influence coefficient becomes negative.
the numerical solutions of their discretized counterparts. To circumvent the problem of an unbounded solution
Therefore, accurate and stable difference representations from the central difference representation, some kind of
of the convection–diffusion equations are of vital impor- upstream discretized expression should be considered to
tance. By inspecting the convection–diffusion equation, account for the inherent physical nature of the convection
one can find that it contains two distinct differential opera- operator. A simple and physically reasonable upwind dif-
tors derived from their respective physical processes: the ference scheme (1UD) is well known [3]. Although this is
convection and the diffusion operators. The convection a robust and unconditionally stable scheme for all flow
operator consists of first-order spatial derivatives of the velocities and grid spacings, its accuracy is found to be
transported variables, which arise from the fluid flow mo- only first order. Significant numerical diffusion is intro-
tion. On the other hand, the diffusion operator is repre- duced and may obscure the physical diffusion in the compu-

tational results. A compromise between CD and 1UD forsented by second-order spatial derivatives due to trans-
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the convection term is proposed by Spalding [4] who mensional scheme was the skew upwind difference scheme
adopted CD in the situation where the flow velocity is not (SKUD) proposed by Raithby [19]. In SKUD, the interface
large or the grid spacing is appropriately refined, and 1UD quantities are determined by the upstream flow location,
in case of CD is prone to be unstable. In practical computa- based on the velocity vector direction rather than on the
tions, however, the gain in numerical accuracy by this hy- split directions. Such consideration can decrease the nu-
brid combination over the 1UD scheme is quite limited. merical diffusion and yields more accurate results. How-
Meanwhile, it is known from numerical experiments [5, 6] ever, the problem with an unbounded solution may also
that an accurate solution of these upwind schemes is diffi- exist for this scheme since there is no definite control for
cult to achieve. Therefore, higher-order accurate upwind the occurrence of negative influence coefficients. This
schemes free of numerical diffusion will be beneficial to scheme is also widely adopted to calculate practical compli-
present the convection operator. Leonard [7], therefore, cated flows [20–22].
devised a quadratic upstream interpolation for convective Besides the separate treatment of convection and diffu-
kinematics (QUICK) scheme based on a finite-volume for- sion terms, one may consider these two terms simultane-
mulation. The interface quantities conveyed by the flow ously by incorporating a local exact solution for the differ-
motion are interpolated by a quadratic distribution, based ential convection–diffusion equations within the finite
on those at two upstream and one downstream computa- computational cells. This approach results in the so-called
tional locations. Atias et al. [8] used upstream linear extrap- exponential difference scheme (1ED) since the influence
olation to depict the interface quantities and created a coefficients involve exponential functions [23–25]. This
second-order accurate upwind difference scheme (2UD). scheme has the noteworthy features that it can be simplified
Although the 2UD scheme was criticized by Gupta and to the CD scheme in the case of low flow velocity or
Manohar [9] for its numerical accuracy and stability with sufficiently refined grid and to the 1UD scheme in the high
some simple mathematical analyses, it possesses some in- velocity condition. Upwind convection effects are inher-
teresting features shown by the numerical experiment in ently considered in the exponential functions. From the
Shyy [10]. Higher-order schemes can be derived by incor- Taylor-series truncation error analysis (TSTE), the appar-
porating more computational nodes [11–14]; however, ent accuracy of the 1ED scheme is only first order. How-
these two upwind schemes (QUICK and 2UD) are still ever, a deeper investigation of the TSTE will show this
widely used by computational fluid dynamic communities scheme provides the exact solution for the one-dimensional
to simulate the convection term [15–17]. Besides, there convection–diffusion equation in the absence of a source
are some additional disadvantages for these high-order term. This verification is given in the present work. There-
schemes. First, these schemes involve more computational fore, the 1ED scheme will yield the exact distribution for
points than the CD or 1UD schemes and increase the

the transported variables of the convection–diffusion pro-
computational load and programming complexity. Second,

cess no matter how large the flow velocity or grid spacing.since more computational nodes are included in the finite
But in the presence of a nonconstant source term and indifference stencil, these schemes need some low-order
the multidimensional situations its accuracy will be reducedschemes to trigger the computational procedure. This is
to first order in the high cell Reynolds number situationcalled the starting problem for high-order schemes. The
as depicted by the TSTE. The numerical diffusion effectadopted low-order scheme will inevitably induce additional
may overwhelm the physical diffusion, as in the case ofnumerical errors near the boundaries which eventually
the 1UD scheme [7], which is why this original exponentialpropagate into the computational domain. Third, these
scheme is not suitable for the accurate prediction of com-schemes suffer from the boundedness problem if the flow
plex flows [26]. The situation of the presence of a noncon-velocity is large and there exist some strong gradients in
stant source term will be frequently encountered in thethe solution. This disadvantage is a direct consequence of
simulation of a flow process with pressure gradient or inGodunov’s theorem on hyperbolic equations, which states
moldelling turbulence behavior. Based on this understand-that a linear monotone scheme cannot be higher than first-
ing, we propose a local particular solution method to re-order accurate [18]. These high-order schemes result in
cover the accuracy possessed by the exponential schemes.some negative influence coefficients for the neighboring
Meanwhile, a second-order accurate exponential differ-computational points in the coefficient matrix equations.
ence scheme (2ED) has also been derived by taking advan-Therefore, the diagonal dominance may not be satisfied
tage of the inherent upwind nature of the exponentialand computational difficulty may occur if iterative methods
function. The numerical diffusion is eliminated by thisare used to solve the resulting difference equations.
scheme in the multidimensional situations. For the high-All the aforementioned difference schemes are based on
order difference schemes, the existence of a source termone-dimensional analysis. For multidimensional situations,
will not deteriorate the formal numerical accuracy depictedthese schemes are applied in each spatial dimension to

derive the resulting discretized equations. The first multidi- by the TSTE. However, the local particular solution
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method can also be applied with any high-order scheme
to account for the spatial distribution of the source term.

The exact solution of the convection–diffusion equation
FIG. 1. Computational module for one-dimensional analysis.

in a finite multidimensional computational cell needs the
information along the boundaries of finite computational
volume. However, values of the dependent variable are

monotonicity. Corresponding numerical diffusivities ofonly defined at computational nodes. Therefore, distribu-
some existing schemes are also calculated. A simple blend-tions based on these discrete nodes must be assumed along
ing procedure of these two proposed exponential differ-the finite control surfaces to derive a corresponding ‘‘ap-
ence schemes is suggested to provide a more accurate andproximate exact solution’’. Stubley et al. [27] adopted
stable simulation for all possible situations, with or withoutpiecewise linear and quadratic distributions along the
solution discontinuities. In Section 5, numerical experi-boundaries in their linear influence scheme (LIS) and qua-
ments for several one- and two-dimensional test problemsdratic influence scheme (QIS), respectively. Chen and
are performed to validate the feasibility of the proposedChen [28], on the other hand, assume an exponential com-
methods. It is shown, from the computational results, thatbined with a linear distribution to derive the finite analytic
the exponential difference schemes can be employed tomethod (FA). These formulations have been successfully
provide accurate discretizations of the convection–applied to solve some practical flow problems. However,
diffusion equations. Finally, Section 6 is devoted to someusage of the assumed boundary distribution will induce
concluding remarks.some numerical errors. The major disadvantage of these

schemes is that the derivation of the approximate solutions
2. ONE-DIMENSIONAL ANALYSISis achieved by the separation of variables. A large computa-

tional load must be devoted to calculate the infinite series
Consider the steady one-dimensional convection–to determine the influence coefficients. In some circum-

diffusion equation for a scalar quantity F in the absencestances, there may be difficulties in obtaining a convergent
of source term:series summation. Therefore, although these schemes can

yield accurate solutions, their applications are not very
widespread because they are computationally inefficient. L(F) 5 2R

dF

dx
1

d 2F

dx2 5 0, (1)
In the present study, we will propose two-dimensional ex-
ponential schemes similar to LIS, QIS, or FA, without the

where R denotes the nondimensional flow velocity which,introduction of assumed boundary profiles. The cumber-
without loss of generality, is assumed to be positive. Thesome computations of infinite series can be avoided. We
first term is the convection term and the second term isregard these schemes as skew exponential schemes
the diffusion term. The present objective is to derive an(SKED).
appropriate discretization for the above equation at theBesides the introductory section mentioned above, the
computational point P shown in Fig. 1. The differencecontent of present paper is organized as follows. In Section
formulas considered in the present work can be expressed2, we will present a one-dimensional analysis for the differ-
in the following general form,ence schemes based on Taylor-series truncation error anal-

ysis and their characteristic roots. A second-order accurate
Lh(f) 5 Awwfww 1 Awfw 1 AEfE

(2)
exponential difference scheme is then proposed. Simple
asymptotic analysis of the general properties of this scheme 1 AEEfEE 2 APfP 5 0,
is also performed. Section 3 deals with the effects of a
nonconstant source term on the accuracy of first-order where f is the approximate value of F and the A’s are
exponential difference scheme. Decrease in the accuracy the influence coefficients. By Taylor-series expansion at
is illustrated and a local particular solution method is pro- point P, the truncation error for the discretized expression
posed to overcome this problem. A simple polynomial (2) can be written as
fitting procedure is also suggested to find the local particu-
lar solution for general source terms. In Section 4, a two-

Th(Fh) 5 h[(AE 2 AW) 1 2(AEE 2 AWW)]h 1 Rj dF

dxdimensional analysis is presented based on the cross-
stream spurious numerical diffusion. We derive a general
expression for the numerical diffusion of skew difference

1 H[(AE 1 AW) 1 4(AEE 1 AWW)]
h2

2
2 1J d 2F

dx2 (3)schemes and propose two skew exponential difference
schemes to model the convection–diffusion equation. One
is designed to be free of numerical diffusion and the other

1 H[(AE 2 AW) 1 8(AEE 2 AWW)]
h3

6 J d 3F

dx3 1 HOT,
has with minimum numerical diffusion to ensure solution
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where Fh is the exact solution at the computational points, that is, AW should be positive and its magnitude should
be the largest of all influence coefficients. Therefore, theh is the uniform grid spacing, and HOT denotes the highest-

order terms. In this equation, the general relation between general rule for the influence coefficients which allows only
positive characteristic roots will be:the influence coefficients,

AP 5 AWW 1 AW 1 AE 1 AWW , (4) AWW # 0; AW $ 0; AP $ 0; AE $ 0; AEE # 0. (6)

was imposed. Satisfaction of this equation implies the re-
With this simple rule, the critical cell Reynolds number

sulting difference equation is independent of the reference
can be obtained by simply assigning AE 5 0, under which

value assigned at the boundary. Therefore, for any differ-
condition one of the characteristic roots will change its

ence scheme, we can determine its associated truncation
sign [10].

error from the influence coefficients. The first term at the
Generally speaking, the requirement for a nonpersistent

RHS of Eq. (3) involving dF/dx can be physically interpre-
oscillatory solution, Eq. (6), is not consistent with that

ted as the spurious velocity because it is arising from the
for a monotonic difference scheme, which states that all

convection term. The second term, on the other hand, from
influence coefficients should be positive. Therefore, a

the diffusion term can then be regarded as the numerical
multipoint monotonic scheme may possess negative char-

diffusion. Therefore, we may say that a difference scheme
acteristic roots and show persistent spurious oscillation

is without spurious velocity or numerical diffusion if the
if the difference boundary condition is not appropriately

first term or the second term in Eq. (3) vanish, respectively.
assigned. However, the oscillatory amplitude in a mono-
tonic difference scheme is constrained by the boundary2.1. Solution of Discretized Equation
values. On the other hand, a difference scheme with all

The exact solution of the discretized equation (2) can positive characteristic roots does not guarantee a bounded
be obtained with the generalized form [9, 10] solution. The coefficients, an in Eq. (5), may have different

signs and subsequently induce local extrema. However, the
number of local extrema cannot be more than that of the

fi 5 OM
n51

anr i
n , (5)

neighboring points involved in the difference equation.
That is, the spurious oscillation cannot pollute all the com-
putational domain.where i is location index, rn is the nth characteristic root, an

is the nth coefficient constant depending on the difference
2.2. The First-Order Exponential Scheme (1ED)boundary condition, and M is the total number of neigh-

boring points included in the finite difference equation (2). The exponential scheme is derived, based on the exact
If there exist some characteristic roots with negative sign, solution of the steady one-dimensional convection–
the discretized solution may show persistent spurious oscil- diffusion equation (1) within the computational cell
lation between successive even–odd computational loca- W-P-E in Fig. 1,
tions. Therefore, when any one of the nontrivial character-
istic roots becomes zero at a particular cell Reynolds

f(x) 5 f1(x) 1 f2(x)number, this cell Reynolds number can be regarded as the
critical cell Reynolds number for this discretized scheme.

withSubstituting the characteristic equation (5) into the finite
difference equation (2), we can solve for the characteristic
roots after some algebraic manipulations. f1(h) 5 0, f1(2h) 5 1, (7)

A simple interpretation can be devised for the above
equations and a general requirement on the influence coef-

andficients for the nonpersistent oscillatory solution can be
found. If all the characteristic roots are positive, we can find

f2(h) 5 1, f2(2h) 5 0,the following simple relation for the influence coefficients:

AWAE $ 0; AWWAW # 0. where both f1(x) and f2(x) satisfy the original differential
equation (1). This is the superposition technique for solving

Since AW is the nearest upstream influence coefficient, a linear differential equations. The influence coefficient AW

reasonable difference scheme must satisfy: is then proportional to f1(0) and AE is proportional to
f2(0). After solving Eq. (7), we can obtain the general
expressions for AW and AE ,AW $ Max(uAEEu, uAEu, uAWWu);
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This simple derivation explains why the 1ED scheme can
AW 5 a exp SRh

2 D, AE 5 a exp S2
Rh
2 D, (8) provide the exact solution regardless of the flow velocity

and grid spacing. But in practical situations, both the source
term and multidimensionality must be considered. Thewhere a is the proportional constant and exp( ) denotes
relation given in Eq. (11) is not satisfied generally and thethe exponential function. With these simple exponential
accuracy of the 1ED scheme will reduce to that as depictedfunctions, the upwind nature for the convection effect has
by the TSTE analysis. Effects of source term on the accu-been automatically included in Eq. (8), because AW . AE racy of exponential schemes will be investigated in theif Rh . 0. The proportional constant a can be determined
present study. In a later section, we will reconsider thisby the fact that the resulting discretized equation (2) should
problem and propose a simple numerical modification toapproximate the differential equation (3) without inducing
treat the source term and recover the accuracy of the differ-spurious velocity, that is,
ence equation.

The characteristic roots for 1ED can be obtained by(AE 2 AW)h 1 R 5 0.
substituting Eqs. (5) and (9) into Eq. (2):

Therefore, the final influence coefficients for the 1ED
r 5 1 or r 5 exp(Rh). (13)scheme are

Therefore, the 1ED scheme is a monotonic scheme without
AWW 5 0, AW 5

R exp(Rh/2)
2h sinh(Rh/2)

, AP 5
R
h

coth SRh
2 D,

(9)

any negative characteristic root.

2.3. The Second-Order Exponential Scheme (2ED)

From the derivation of the exponential scheme givenAE 5

R exp S2
Rh
2 D

2h sinh(Rh/2)
, AEE 5 0;

above, we find the relative importance of the influence
coefficients for the upstream (AW) and downstream (AE)
computational points in the difference equation. The ap-and the truncation error is
parent accuracy can be raised by incorporating more com-
putational points (AWW) and (AEE) in the finite difference

Th,1ED 5 FRh
2

cothSRh
2 D2 1G d2F

dx2

(10)
equation. The relation of the influence coefficients can be
taken as

2
Rh2

6
d3F

dx3 1 HOT.

AW 5 a1 exp SRh
2 D, AE 5 a1 exp S2

Rh
2 D,

(14)The numerical diffusivity for the 1ED scheme is (Rh/
2)coth(Rh/2) 2 1, which cannot be neglected at high cell AWW 5 a2 exp(Rh); AEE 5 a2 exp(2Rh).
Reynolds number, and the effective cell Reynolds number
is 2 tanh(Rh/2). From the influence coefficients given in The proportional constants, a1 and a2 , can be determined
Eq. (9), the 1ED scheme will approach the CD scheme at from the TSTE analysis to satisfy a second-order accurate
small cell Reynolds number and behaves like a second- approximation:
order scheme. For high cell Reynolds number, however,
the 1ED scheme will approach the 1UD scheme which is AE 2 AW 1 2(AEE 2 AWW) 5 2R/h,

(15)only first-order accurate. However, if we consider the exact
AE 1 AW 1 4(AEE 1 AWW) 5 2/h2.solution of the one-dimensional convection–diffusion

equation without the source term, we have the following re-
lation: The resulting influence coefficients are:

AWW
dnF

dxn 5 Rn21 dF

dx
. (11)

Substituting this relation into the TSTE in Eq. (10) and
5

1
h2 sinh SRh

2 D2
R
2h

cosh SRh
2 D

4 cosh(Rh)sinh SRh
2 D2 2 sinh(Rh)cosh SRh

2 D
exp(Rh),collecting the coefficients, we can derive the actual trunca-

tion error for the 1ED scheme:

AWTh,1ED 5 0. (12)
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the 2ED scheme can be simplified to yield the following
discretized equation:

5

2
R
h

cosh(Rh) 2
2
h2 sinh(Rh)

4 cosh (Rh)sinh SRh
2 D2 2 sinh(Rh)cosh SRh

2 D
exp SRh

2 D,

2fWW 1 16fW 2 30fP 1 16fE 2 fEE 5 0. (18)

AP

This is a fourth-order difference scheme for the pure diffu-
sion problem [12] and its characteristic roots are

5

1
h2 sinh SRh

2 D2
R
2h

cosh SRh
2 D

2 cosh(Rh)sinh SRh
2 D2 sinh(Rh)cosh SRh

2 D
cosh(Rh)

r 5 1, 1, 7 1 Ï48, and 7 2 Ï48 (19)

which are all positive. Therefore, the 2ED scheme can1

2
R
h

cosh(Rh) 2
2
h2 sinh(Rh)

2 cosh(Rh)sinh SRh
2 D2 sinh(Rh)cosh SRh

2 D
cosh SRh

2 D,
provide a highly accurate and nonoscillatory expression
for the diffusion dominated problem. In the limit of pure
convection problem (Rh R y), the difference equation

AE can be simplified as:

5

2
R
h

cosh(Rh) 2
2
h2 sinh(Rh)

4 cosh(Rh)sinh SRh
2 D2 2 sinh(Rh)cosh SRh

2 D
2Adf WW 1 Fdf W 2 f P 5 0. (20)

This expression is identical with the 2UD scheme for Rh R
y [8]. This coincidence can be interpreted by observingexp S2

Rh
2 D,

the influence coefficients given in Eq. (16). The exponential
functions imply vanishing of the downstream influence co-AEE
efficients for large cell Reynolds number. The characteris-
tic roots for this condition are

5

1
h2 sinh SRh

2 D2
R
2h

cosh SRh
2 D

4 cosh(Rh)sinh SRh
2 D2 2 sinh(Rh)cosh SRh

2 D
exp(2Rh)

r 5 1 or r 5 Ad (21)

(16)

which are all positive and indicate that the persistent spuri-
with the following truncation error: ous oscillation will not exist in the difference solution.

Therefore, in both limiting cases of pure diffusion and
Th,2ED convection problems, the 2ED scheme will be superior

to the 2UD scheme, albeit there is higher computational
complexity involved for evaluating the exponential func-
tions. These calculations can, nevertheless, be approxi-5 23R

h
1 6

1
h2 sinh SRh

2 D2
R
2h

cosh SRh
2 D

2 cosh(Rh)sinh SRh
2 D2 sinh(Rh)cosh SRh

2 D mated with some simple polynomials as in the case of the
power-law scheme approximation for the 1ED scheme
[29].

For any value of the cell Reynolds number, the charac-
teristic equation for the 2ED scheme issinh(Rh)4 h3

6
d 3F

dx3 1 HOT.

(17) AEEr4 1 AEr3 2 APr2 1 AWr 1 AWW 5 0 (22)

The asymptotic properties of the 2ED scheme developed
herein can be analyzed as the cell Reynolds number ap- with the influence coefficients given in Eq. (16). The char-

acteristic roots for this equation can be determined [30]proaches zero or infinity. As the cell Reynolds number
approaches zero, the influence coefficients in Eq. (16) for and, except for the constant reference mode r 5 1, are
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3. EFFECTS OF SOURCE TERM

One of the major criticisms on the 1ED scheme is that
its accuracy will decrease drastically if there exists a strong
nonconstant source term in the differential equation [7, 23],

Ls(F) 5 2R
dF

dx
1

d 2F

dx2 1 S 5 0. (23)

Mathematically, with this nonconstant source term, S, the
functional relation given in Eq. (11) is no longer satisfied
and the accuracy will decrease to that depicted in Eq. (10).
In the present study, we propose a natural local particular
solution method to recover the accuracy with the 1ED
scheme. Consider the differential equation in a finite com-
putational cell as shown in Fig. 1. If a local particular
solution f* can be found satisfying Eq. (23) without any
constraint on the boundary condition;

FIG. 2. Characteristic roots for the 2ED scheme. Ls(f*) 5 2R
df*
dx

1
d 2f*
dx2 1 S 5 0 (24)

then a difference quantity defined as
plotted in Fig. 2 as a function of cell Reynolds number.
As shown in Fig. 2, two characteristic roots, r1 and r2 , will f̂ 5 f 2 f* (25)
approach infinity with large cell Reynolds number which
indicates the singular behavior of Eq. (22) when the down- will satisfy the source-free differential equation (1). The
stream coefficients AE and AEE vanish. The characteristic 1ED scheme applied to approximate the source-free equa-
roots shown in Fig. 2 are all positive, indicating that there tion (1) will be identical with the original scheme and show
is no persistent spurious oscillation in the solution by the no truncation error,
2ED scheme. Lh(f̂) 5 0. (26)

Normalized influence coefficients for the one-dimen-
sional schemes considered in the present study (CD, 1UD, Finally, substituting the original variable into the trans-
1ED, QUICK, 2UD, and 2ED) are given in Fig. 3. Those formed difference equation leads to the difference
for other well-known schemes, CD, 1UD, QUICK, and equation
2UD can be found from the existing literature [7, 8, 10].
These coefficients have been normalized by their respec- Ls

h(f) 5 AWWf WW 1 AWf WW 1 AEfE
(27)tive diagonal terms such that

1 AEEf EE 2 APf P 1 Sh 5 0

withAWW 5
AWW

AP
, AW 5

AWW

AP
, Ae 5

AE

AP
, Aee 5

AEE

AP
.

Sh 5 APf*P 2 AWWf*WW 2 AWf*W 2 AEf*E 2 AEEf*EE .
It can be found from Figs. 3b and 3c that the 1ED scheme

This local particular solution method can be used forwill approach the 1UD scheme and, from Figs. 3e and 3f,
any difference scheme to treat the source term. Comparingthe 2ED scheme will approach the 2UD scheme as the
this method with the conventional finite difference treat-cell Reynolds number increases. All schemes, except 2ED,
ment of source term, whose exact value at the computa-will have 3-point stencils as the flow velocity vanishes. For
tional location is specified,the 2ED scheme, the 5-point stencil remains, giving a highly

accurate expression for the diffusion dominated situation.
Sh 5 Si , (28)Also note that the nearest downstream influence coeffi-

cients, AE , for the CD and QUICK schemes becomes nega-
tive as the cell Reynolds number exceeds their respective where Si denotes the source function evaluated at x 5 xi .

The local particular solution method provides a modifiedcritical value (RHc,CD 5 2. and Rhc,QUICK 5 Kd) [10].
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FIG. 3. Influence coefficients for one-dimensional difference schemes.

treatment considering the solution variation in the finite
sn 5

S(n)(xP)
n!

,computational cell due to the existence of a source term.
In a finite volume procedure, the conventional treatment
in Eq. (28) implies an assumed piecewise constant distribu- where xP is the coordinate of the location where the Taylor-
tion for the source term. Therefore, the present treatment series expansion (29) is applied and S(n) stands for
can increase the accuracy of difference expression for the dnS/dxn. Substituting Eq. (29) into Eq. (24), neglecting
source term. higher-order terms, and assuming that the local particular

The above derivation raises the question how to deter- solution has the form
mine a local particular solution to Eq. (24). For an explicitly
defined function of the source term, any procedure to find

f* 5 ON11

n51
bn(x 2 xP)n, (30)the unconstrained particular solution to the differential

equations can be implemented [31]. In the present work,
we employ an approximate polynomial fitting procedure we can obtain the resulting local particular solution by
of the source term to find a general local particular solution, direct comparison of the polynomial coefficients

S(x) 5 ON
n50

sn(x 2 xP)n 1 HOT (29) bn 5
1

Rn! ON2n11

m50

S(n1m21)

Rm (31)

orwith
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f* 5 ON11

n51
F 1

Rn! S ON2n11

m50

S(n1m21)

Rm D(x 2 xP)nG
and the discretized expression for the extra source term is

Sh 5 2ON11

n51
[AWW(22)n 1 AW(21)n

(32)

1 AE 1 AEE(2)n]bnhn.

The terms in the bracket are also identical to those in the
TSTE of Eq. (3). Therefore, for any at least first-order
accurate scheme, the piecewise constant approximation
will yield the same expression as in the conventional formu-
lation Eq. (28). On the other hand, for a second-order

FIG. 4. Computational module for two-dimensional analysis.difference scheme, the constant approximation Eq. (28)
will also achieve the same accuracy as that obtained using
piecewise linear approximation for the source term. How- pressions for the split convection–diffusion operator in
ever, for a first-order difference representation, the each coordinate direction,
piecewise linear approximation will yield higher accuracy
than that resulting from the piecewise constant approxi-

Lx(F) 5 2u
dF

dx
1

d 2F

dx2 , Ly(F) 5 2v
dF

dy
1

d 2F

dy2 . (35)mation.
The above derivation is proposed for an explicitly de-

fined source term. If the source term in Eq. (23) is not The difference expressions, Lx
h(f) and Ly

h(f), are the
explicitly defined but only obtainable at discrete computa- same as the one-dimensional ones given in the previous
tional locations, the above modification is also feasible by section. For the exponential schemes considered in the
assigning the coefficients in the approximating polynomial present work, the 1ED scheme can provide the exact solu-
Eq. (29) so that the values of the polynomials at the compu- tion in the one-dimensional situation. However, in the two-
tational locations equal the prescribed values. For a three- dimensional case, combining two split one-dimensional
point finite difference stencil considered in the present 1ED schemes yields severe numerical diffusion. The nu-
study, a quadratic polynomial will yield at least a third- merical diffusivity in the two-dimensional problem is de-
order accurate approximation for the source term. fined as the one normal to the streamline direction. For

example, the numerical diffusivity for the 1UD scheme has
4. TWO-DIMENSIONAL ANALYSIS been derived by Davies and Mallinson [32],

The steady two-dimensional convection–diffusion equa-
tN 5

uVuh sin(2u)
4(cos3 u 1 sin3 u)

, (36)tion considered in the present study has the form

where uVu is the magnitude of velocity vector, h is the grid
L(F) 5 2u

dF

dx
2 v

dF

dy
1

d 2F

dx2 1
d 2F

dy2 , (33) spacing in both directions, and u is the angle between the
velocity vector and the grid line, which can be regarded
as the flow skew angle. This expression was also verifiedwhere u and v are the nondimensional velocity components
numerically by Wolfshtein [33]. In the present work, wein the x- and y-directions, respectively. Without loss of
will propose novel two-dimensional exponential schemesgenerality, these velocity components are assumed to be
by minimizing the numerical diffusion.positive. The corresponding computational module for a

typical computational point P is given in Fig. 4. Conven- 4.1. The Nonskew Exponential Scheme (ED)
tional treatment for this two-dimensional problem is based

Considering the computational module shown in Fig. 4,on the combination of two split one-dimensional ones,
the approximate solution for Eq. (33) is expressed as

Lh(f) 5 Lx
h(f) 1 Ly

h(f), (34)
f(x, y) 5 f1(x, y) 1 f2(x, y) 1 f3(x, y) 1 f4(x, y) (37a)

with the boundary conditionswhere Lx
h(f) and Ly

h(f) are the respective difference ex-
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f1(x, k) 5 f1(x, 2k) 5 f1(h, y) 5 0, f1(2h, 0) 5 1,
f4(x, y) 5 Oy

n51
dn exp Sux 1 vy

2 D
f2(x, k) 5 f2(x, 2k) 5 f2(2h, y) 5 0, f2(h, 0) 5 1,

f3(h, y) 5 f3(2h, y) 5 f3(x, k) 5 0, f3(0, 2k) 5 1,
sinh FÏu2 1 v2 1 n2f2/h2

2
(y 1 k)G sin Fnf

2h
(h 2 x),G

f4(h, y) 5 f4(2h, y) 5 f4(x, 2k) 5 0, f4(0, k) 5 1,
(37b)

with the following constraints:

where h and k are the grid spacings in x- and y-directions,
respectively. Equation (37) is valid because of the superpo-

1 5 Oy
n51

an exp S2
uh
2 D sinh[Ï(uh)2 1 (vh)2 1 n2f2h2/k2]sition for linear differential equations. All the split solu-

tions, f1(x, y), f2(x, y), f3(x, y), and f4(x, y), satisfy the
original differential equation (33). The influence coeffi-

sin Fnf
2 G,cients in the difference equation can be related to these

split solutions,

1 5 Oy
n51

bn exp Suh
2 D sinh[Ï(uh)2 1 (vh)2 1 n2f2h2/k2]

AW Y f1(0, 0), AE Y f2(0, 0),
(38)

AS Y f3(0, 0), AN Y f4(0, 0),
sin Fnf

2 G
(42)where Y is the proportional constant and the difference

equation to approximate the two-dimensional convection– 1 5 Oy
n51

cn exp S2
vk
2 D sinh[Ï(uk)2 1 (vk)2 1 n2f2k2/h2]

diffusion problem will become

AWf W 1 AEf E 1 ASf S 1 ANf N 2 APf P 5 0. (39) sin Fnf
2 G

Consideration of the constant reference mode in this prob-
1 5 Oy

n51
dn exp Svk

2 D sinh[Ï(uk)2 1 (vk)2 1 n2f2k2/h2]lem provides a further relation between the influence coef-
ficients,

sin Fnf
2 G.

AP 5 AW 1 AE 1 AS 1 AN . (40)

The influence coefficients can then be determined if theBy separation of variables, we can find the general solu-
series constants an , bn , cn , and dn are obtained. However,tions for these split equations,
the constraints in Eq. (42) are not sufficient to yield the
complete split solutions. There is only one constraint de-
fined at one computational location for each split solution.f1(x, y) 5 Oy

n51
an exp Sux 1 vy

2 D
More information will be needed to determine the series
coefficients, an , bn , cn , and dn , i.e., some prescribed distri-
bution along the boundaries of the computational cell. Forsinh FÏu2 1 v2 1 n2f2/k2

2
(x 2 h)G sin Fnf

2k
(y 2 k)G

example, the profile along SW-W-NW in Fig. 4 must be
specified to determine f1(x, y). As mentioned in the Intro-

f2(x, y) 5 Oy
n51

bn exp Sux 1 vy
2 D duction, some researchers adopted various assumed distri-

butions based on the values at the computational locations
to circumvent this difficulty. In the present study, we adopt

sinh FÏu2 1 v2 1 n2f2/k2

2
(x 1 h)G sin Fnf

2k
(k 2 y)G a different point of view to treat the series coefficients.

We do not assume any explicit distribution but assert that(41)
identical distributions along these boundaries should exist.
That is,

f3(x, y) 5 Oy
n51

cn exp Sux 1 vy
2 D

f1(2h, y) 5 f2(h, y), f3(x, 2k) 5 f4(x, k). (43)

sinh FÏu2 1 v2 1 n2f2/h2

2
(y 2 k)G sin Fnf

2k
(x 2 h)G

This is a direct consequence of a reasonable continuous
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boundary profile between two adjacent computational consideration has been proven to be useful to reduce the
numerical diffusion produced in the upwind differencecells. For example, the distribution at SW-W-NW in Fig.

4 should be the same for the two computational cells lo- scheme [19]. Thus, the discretized equation assumes the
form:cated at points P and WW. Based on this understanding,

the constraints in the split solutions given in Eq. (42) will
satisfy the relations Lh(f) 5 AWf W 1 AEf E 1 ASf S 1 ANf N

1 ASWf SW 1 ASEf SE 1 ANEf NE (48)
an exp S2

uh
2 D5 bn exp Suh

2 D,

(44)
1 ANWf NW 2 APf P 5 0.

The Taylor-series expansion of this discretized equationcn exp S2
vk
2 D5 dn exp Svk

2 D can be expressed as

for all possible n. Thus, the corresponding relations for
Lh(Fh) 5 (2AW 1 AE 2 ASW 1 ASE 1 ANE 2 ANW)h

F

xthe influence coefficients can be derived from Eqs. (38)
and (41),

1 (2AS 1 AN 2 ASW 2 ASE 1 ANE 1 ANW)k
F

y
AW 5 a1 exp Suh

2 D, AE 5 a1 exp S2
uh
2 D

(45) 1 (AW 1 AE 1 ASW 1 ASE 1 ANE 1 ANW)
h2

2
2F

x2

(49)AS 5 a2 exp Svk
2 D, AN 5 a2 exp S2

vk
2 D.

1 (ASW 2 ASE 1 ANE 2 ANW)hk
2F

xy

These relations can be regarded as the two-dimensional 1 (AS 1 AN 1 ASW 1 ASE 1 ANE 1 ANW)
extension of the one-dimensional situation given in Eq.
(8). The upwind nature of the convection process is auto- k2

2
2F

y2 1 HOT.
matically considered in this general relation for influ-
ence coefficients.

Performing an analysis similar to that for the nonskewThe constants in Eq. (45) are then derived from the
exponential difference scheme yields the values of the in-requirement of first-order accuracy, which also implies
fluence coefficients in the skew scheme,elimination of the spurious velocity:

(AE 2 AW)h 1 u 5 0, (AN 2 AS)k 1 v 5 0. (46)
AW 5 a1 exp Suh

2 D, AE 5 a1 exp S2
uh
2 D,

Consequently, the influence coefficients for the first-order
accurate nonskew two-dimensional exponential scheme

AS 5 a2 exp Svk
2 D, AN 5 a2 exp S2

vk
2 Dare

ASW 5 a3 exp Suh 1 vk
2 D, ASE 5 a3 exp S2uh 1 vk

2 D,AW 5
u exp(uh/2)

2h sinh(uh/2)
, AE 5

u exp(2uh/2)
2h sinh(uh/2)

,

(47)

AS 5
v exp(vk/2)

2k sinh(vk/2)
, AN 5

v exp(2vk/2)
2k sinh(vk/2)

. ANE 5 a3 exp S2
uh 1 vk

2 D,

These expressions are identical with those derived from
ANW 5 a3 exp Suh 2 vk

2 D, (50)
the conventional split one-dimensional analysis.

4.2. The Skew Exponential Difference Scheme (SKED)
where a1 and a2 are called normal constants and a3 is
called the skew constant. These constants are determinedBased on the numerical diffusion analysis [32], we can

find that the nonskew exponential scheme (ED) produces by minimizing the numerical diffusion to yield a more
accurate discretization. Comparing this equation with Eq.severe numerical diffusion. To alleviate this deficiency, the

corner computational points (SW, SE, NE, and NW in (45), it is clear that the skew scheme provides a general
representation. For the first-order term in TSTE, the fol-Fig. 4) should be included in the difference equation. This
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lowing equations must be satisfied for prevention of spuri- The numerically induced diffusivity is the difference be-
tween the effective and the physical diffusivity:ous velocity:

(2AW 1 AE 2 ASW 1 ASE 1 ANE 2 ANW) 5 2u/h
(51) tN 5 teff 2 1 5

txxtyy 2 t 2
xy

txx cos2u 1 tyy sin2u 1 txy sin(2u)
2 1. (57)

(2AS 1 AN 2 ASW 2 ASE 1 ANE 1 ANW) 5 2v/k.

These constraints are similar to those for the nonskew This is a general expression for the numerical diffusivity
scheme depicted in Eq. (46). The corresponding equations of difference schemes. With this formulation, we can also
for the coefficients are find the numerical diffusivity for many existing schemes,

such as the nonskew exponential difference scheme (ED),
the skew upwind difference scheme (SKUD), and the finitea1 1 2a3 cosh Svk

2 D5
u

2h sinh(uh/2)
(52)

analytic method (FA).
From Eq. (53), it can be found that the normal diffusivi-

ties in the x-y coordinates, txx and tyy , are functions of flowa2 1 2a3 cosh Suh
2 D5

v
2k sinh(vk/2)

.
velocity and grid spacing, independent of the constants, a1 ,
a2 , and a3 . Therefore, the numerical diffusivity depends

The other equation needed to find the influence coeffi- only on a3 , irrespective of a1 and a2 . A reasonable selec-
cients is based on the evaluation of numerical diffusion. tion of a3 is based on the fulfillment of the zero numerical
From Eqs. (49), (50) and incorporating Eq. (52), compo- diffusivity condition. From Eq. (57), this selection will lead
nents of the effective diffusivity tensor for the skew expo- to the description for the skew diffusivity, txy ,
nential scheme can be written as

txy

txx 5
uh
2

coth Suh
2 D 5

2sin(2u) 1 Ï4(txxtyy 2 txxcos2 u 2 tyysin2 u) 1 sin2(2u)
2

,

(58)
txy 5 2hka3 sinh Suh

2 D sinh Svk
2 D (53)

and the corresponding scheme constants can be deter-
mined with Eqs. (52), (53), and (58):tyy 5

vk
2

coth Svk
2 D,

where txx and tyy are the normal diffusivities and txy is the a1 5
1

h sinh(uh/2) Fu
2

2
txy

k
coth Svk

2 DGskew diffusivity. Let uP be the angle between the principal
axis of the diffusivity tensor and the x-axis. The principal
diffusivities tXX and tYY will satisfy the relations a2 5

1
k sinh(vk/2) Fv

2
2

txy

h
coth Suh

2 DG (59)

txx 2 tyy 5 (tXX 2 tYY) cos(2uP)
(54) a3 5

txy

2hk sinh(uh/2) sinh(vk/2)
.

txy 5
1
2

(tXX 2 tYY) sin(2uP).

From Eqs. (53) and (58), one can easily prove that the skew
The effective diffusivity, defined as the diffusivity normal diffusivity will always be nonnegative since the normal
to the flow direction, can then be expressed as [34] diffusivities are greater than one. The corresponding skew

constant a3 is also nonnegative. However, in some circum-
stances, one of the normal constants may become negative,teff 5

tXXtYY

tXX cos2(u 2 uP) 1 tYY sin2(u 2 uP)
. (55)

which results in a nonmonotonic difference scheme. To
ensure monotonicity, this negative normal constant is reset

Expanding the above equation and combining it with to zero and the other two constants are recalculated from
the relations given in Eq. (54), the effective diffusivity can Eq. (52). This procedure can be interpreted to provide
be expressed in terms of the normal and skew diffusivities, the minimum numerical diffusivity required to maintain

scheme monotonicity. Consequently, scheme constants in
this monotonic skew difference representation can be sum-

teff 5
txxtyy 2 t 2

xy

txx cos2u 1 tyy sin2u 1 txy sin(2u)
. (56)

marized as



146 YAO-HSIN HWANG

cients can be easily derived from the symmetric condition.
The numerical diffusivity has also been normalized by the
resulting cell Reynolds number:a3 5 min1 txy

2h sinh Suh
2 D sinh Svk

2 D
,

u

4h sinh Suh
2 D cosh Svk

2 D
,

Td 5 tN/uVuh. (61)

From these figures, one can find that the influence coef-
ficients of ED, FA, and SKED2 are all-positive, which isv

4k sinh Svk
2 D cosh Suh

2 D2 (60)
the requirement for a monotonic difference scheme. The
possible oscillatory schemes, SKUD and SKED1, possess
negative influence coefficients. In some circumstances,
these two schemes may also yield monotonic solution if
the diffusion transport is significant. As for the numericala1 5

u
2h sinh(uh/2)

2 2a3 cosh Svk
2 D diffusivity, the ED scheme gives the largest numerical dif-

fusivity and SKUD may yield negative numerical diffusiv-
ity. Among the monotonic schemes, the SKED2 schemea2 5

v
2k sinh(vk/2)

2 2a3 cosh Suh
2 D.

yields the smallest numerical diffusivity. This is also the
minimum numerical diffusion required to prevent the

The last two equations are directly derived from Eq. (52) problem of an unbounded solution. The FA method, de-
to ensure elimination of the spurious velocity. spite the larger amount of computational effort required,

Based on the numerical diffusivity analysis given above, is worse than the simpler SKED2, especially when the
we can derive two kinds of the skew exponential scheme. velocity vector is close to the grid diagonal line (u 5 458).
The first (SKED1), given in Eq. (59), is completely free Therefore, SKED1 and SKED2 are superior to SKUD,
of numerical diffusivity but may induce spurious oscilla- ED, and FA, in view of the inherent numerical diffusion
tion. The second (SKED2), shown in Eq. (60), gives a and scheme monotonicity. Meanwhile, if the physical diffu-
monotonic scheme with minimum numerical diffusivity. In sion is significant in some flow region, these two schemes
a later section, we will blend these two schemes to provide will be identical and yield the monotonic scheme without
a more accurate and monotonic scheme. This blended numerical diffusion. Figure 6 illustrates the range of cell
scheme may allow negative influence coefficients if the Reynolds numbers that ensure monotonic behavior for
monotonicity in the solution is still preserved. SKED and SKUD in terms of the flow skew angle, u. It

is shown that SKED may give both accurate and monotonic4.3. Numerical Diffusivity
solutions if the cell Reynolds number is not larger than 8.

For comparison purposes, we calculate the numerical This critical cell Reynolds number increases with the flow
diffusivities of some widely used schemes. These schemes skew angle. As for SKUD, the critical cell Reynolds num-
include the nonskew exponential difference scheme (ED), ber will reach a minimum value of about 4, corresponding
the skew upwind difference scheme (SKUD), and the finite to a flow skew angle u 5 tan21(v/u) 5 tan21(1/2) or u 5
analytic method (FA). These schemes are only first-order tan21(2).
accurate in a one-dimensional situation based on TSTE
analysis. All the second-order accurate schemes, on the 5. NUMERICAL EXPERIMENTS
other hand, will not produce numerical diffusion but may
result in a spurious oscillatory solution. All the analyses The difference approximations for the convection–

diffusion equation can be evaluated by solving several testgiven herein are based on Taylor-series expansion, Eq.
(49), and the numerical diffusivity, Eq. (57), if the influence problems. Both one- and two-dimensional problems are

examined with the proposed schemes and the results com-coefficients are given. The influence coefficients for SKUD
and FA can be found in the existing literature [19, 28]. pared with those from other existing difference approxima-

tions. For the one-dimensional situation, the schemes ex-The resulting numerical diffusivities are listed in Table I.
Representative influence coefficients and numerical dif- amined include the first-order upwind difference (1UD),

central difference (CD), first-order exponential differencefusivities for the two-dimensional schemes considered in
the present work are calculated and illustrated in Figs. (1ED), quadratic upstream interpolation for convective

kinematics (QUICK), second-order upwind difference5.1–5.5 Grid spacings in the x- and y-directions for these
calculations are set to be equal (h 5 k) and the cell Reyn- (2UD), and the second-order exponential difference

(2ED). The last scheme is the novel one proposed herein.olds number ranges from 0 to 100. The influence coeffi-
cients have been normalized by their diagonal term. Only The effects of source term on scheme accuracy are also

investigated and the local particular solution method isAW and ASW are given in these figures since other coeffi-
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TABLE I

Numerical Diffusivities of Difference Schemes

Scheme GN

ED uVuhk sin(2u) coth(uh/2) coth(vk/2)
h cos3(u) coth(uh/2) 1 k sin3(u) coth(vk/2)

2 1

16/uVu 1 8h cos(u) 1 8k sin(u) 1 2uVuhk sin(2u) 2 9uVuh2 sin2(u)
8h cos3(u) 1 8k sin3(u) 1 12h sin(u) sin(2u) 1 16/uVu

2 1 for uk . 2vh

SKUD 16/uVu 1 8h cos(u) 1 8k sin(u) 1 2uVuhk sin(2u) 2 9uVu[h sin(u) 1 k cos(u)]2

8h cos3(u) 1 8k sin3(u) 1 [h sin(u) 1 k cos(u)] sin(2u) 1 16/uVu
2 1 for 4vh $ 2uk . vh

16/uVu 1 8h cos(u) 1 8k sin(u) 1 2uVuhk sin(2u) 2 9uVuk2 cos2(u)
8h cos3(u) 1 8k sin3(u) 1 12k cos(u) sin(2u) 1 16/uVu

2 1 for vh $ 2uk

uVuhk sin(2u)coth(uh/2)coth(vk/2) 2 2uVuhsin(u)(1 2 PA 2 PB)/(1 2 PB)/[k coth(uh/2)]j2

4h cos3(u) coth(uh/2) 1 4k sin3(u) coth(vk/2) 1 4 sin(u) sin(2u)(1 2 PA 2 PB)/(1 2 pB)/[k coth(uh/2)]
2

FA

1

SKED1 0

SKED2 uVuhk sin(2u) coth(uh/2) coth(vk/2) 2 32a2
3h2k2 sinh2(uh/2) sinh2(vk/2)/uVu

4h cos3(u) coth(uh/2) 1 4k sin3(u) coth(vk/2) 1 16a3hk sinh(uh/2) sinh(vk/2) sin(2u)
2 1

Note. PA 5 2uh cosh(uh/2) cosh(vk/2) coth(uh/2)E; PB 5 1 1 (PA 2 1)vh coth(vk/2)/[uk cosh(uh/2)]; E 5

oy
m51 21(21)mlmh/[(uh/2)2 1 (lmh)2] coshÏ[(uh/2)2 1 (vk/2)2]k2; lm 5 ((2m 2 1)/2)f.

used to raise the accuracy of first-order schemes (1UD and the skew exponential schemes (SKED1 and SKED2).
The last two schemes are proposed in the present study.and 1ED).

For the two-dimensional test problems, the difference The one-dimensional difference schemes are applied in
the two split directions to obtain the resulting differenceschemes examined include the schemes based on one-di-

mensional analysis, except CD which has been proven to expressions. Finally, a stable scheme combining the special
features of SKED1 and SKED2 is proposed to yield abe unsuitable for high Reynolds number flow calculations,

and those based on two-dimensional analysis. The schemes more accurate method. This scheme is based on the idea
that the numerical diffusion should be controlled and intro-based on two-dimensional analysis include the skew up-

wind difference (SKUD), finite analytical method (FA), duced to the scheme only when it is truly needed. All the

FIG. 5.1. Influence coefficients and numerical diffusivity for ED.
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FIG. 5.2. Influence coefficients and numerical diffusivity for SKUD.

computational results support our analyses in previous sec- F(0) 5 0.0, F(1) 5 1.0.
tions.

The exact solution for this problem is:
5.1. One-Dimensional Problems

5.1.1. A PROBLEM WITH A QUADRATIC SOURCE TERM.
F(x) 5 [1 2 F P(1)]

exp(Rx) 2 1
exp(R) 2 1

1 F P(x) (63)The first test problem considered is the convection–
diffusion equation with a quadratically distributed
source term, and the particular solution F P(x), due to the existence of

the source term is
R

dF

dx
5

d 2F

dx2 1 S0 1 S1x 1 S2 x2, (62)

F P(x) 5 S2S2

R3 1
S1

R2 1
S0

RDx 1 SS2

R2 1
S1

2RDx2 1 S S2

3RDx3.
with the boundary conditions,

FIG. 5.3. Influence coefficients and numerical diffusivity for FA.
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FIG. 5.4. Influence coefficients and numerical diffusivity for SKED1.

The corresponding difference equation can be expressed 1). Schemes with negative characteristic roots (CD and
QUICK) will yield oscillatory solutions if the cell Reynoldsas Eq. (2) and the system equations are solved by a general

pentadiagonal matrix algorithm (PDMA) [12]. The starting number exceeds their critical values. Therefore, even
though these schemes possess high-order accuracy in TSTEproblem for the 5-point stencil schemes (2UD, QUICK,

and 2ED) are solved by incorporating the 1UD scheme to analysis, the computational results are not acceptable due
to the unphysical wiggle. As the cell Reynolds numberprovide the difference equation for the computational

node nearest the upstream boundary. falls below their corresponding critical value, these two
schemes will predict more accurate results than 1UD. AsFigure 7.1 shows the maximum nodal error of the compu-

tational results by various difference schemes for the spe- for our proposed 2ED scheme, the calculated results are
quite satisfactory over all Reynolds numbers and grid spac-cial case of no extra source term (S0 5 S1 5 S2 5 0). The

flow Reynolds number is 500 and the grid spacing is set ings. Especially for the low cell Reynolds number situation,
the 2ED scheme yields a fourth-order accurate differenceto have the cell Reynolds number ranging from 0.01 to

100. For the high Reynolds number flow, a thin boundary expression and provides highly accurate results. For high
cell Reynolds number condition, the 2ED scheme will be-layer will be established at the downstream boundary (x 5

FIG. 5.5. Influence coefficients and numerical diffusivity for SKED2.
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situations. As shown in the previous analysis, the 1ED will
yield exact solutions and no numerical errors can be de-
tected.

The effects of the source term on the solution accuracy
are considered by the introduction of a quadratic source
term distribution (S0 5 S1 5 0, S2 5 4.5R) and the results
are shown in Fig. 7.2. The mode parameter m in this and
the following figures is defined as

m 5 N 1 1, (64)

where N is the approximate order for the source term as
given in Eq. (29). That is, m 5 1 corresponds to the
piecewise constant approximation for the source term and
m 5 2 is the piecewise linear approximation. Figure 7.2a
represents the mean computational error at computational
nodes for the results predicted by various difference
schemes with a piecewise constant treatment for the source
term (m 5 1). This treatment is frequently adopted in

FIG. 6. Critical cell Reynolds numbers for SKUD and SKED. conventional finite difference approaches. As shown in this
figure, the accuracy of the two first-order schemes (1UD
and 1ED) has deteriorated; while for the higher order

have like the 2UD scheme since the downstream influence schemes, the accuracy persists, irrespective of the existence
can be neglected and still yields quite accurate results. of the source term. This phenomenon can be explained
Therefore, for the source-free convection–diffusion prob- through the TSTE analysis given in Section 3. The 1ED
lem, one can conclude that the 1UD scheme gives satisfac- scheme, which is an exact difference expression for the
tory solution only for high Reynolds number situation and source-free problem, will be reduced to a first-order accu-
will produce large numerical error for low cell Reynolds rate scheme in the high cell Reynolds number situation,
number flow. Both the CD and QUICK schemes, on the as depicted in the TSTE. Figure 7.2(b) shows the mean
other hand, yield quite accurate solutions if the cell Reyn- error that resulted from the piecewise linear approximation
olds number is not larger than their respective critical val- for the source term in finding the local particular solution
ues. Both the 2ED and 2UD schemes can produce accurate (m 5 2). The accuracy of 1UD and 1ED increases, espe-
solutions for all cell Reynolds numbers and the former can cially in the high Reynolds number situation. Figure 7.2c
provide more accurate predictions in diffusion-dominated depicts the results based on the quadratic treatment for

the source term (m 5 3). Since the global source term is
also of quadratic distribution, this treatment will transform
the problem to a source-free convection–diffusion one.
No additional numerical error can be found for the 1ED
scheme; that is, the accuracy of first-order upwind schemes
(1UD and 1ED) is completely recovered with the appro-
priate treatment of the source term. Therefore, to obtain
a reasonable numerical prediction, we can use the 1ED
with suitable treatment of the source term (at least
piecewise linear approximation) or adopt the 2ED scheme
with simple piecewise constant treatment. Figure 7.3 illus-
trates the effects of adopting a local particular solution
method in increasing the scheme accuracy for 1ED and
2ED. From this simple test problem, we can find that the
accuracy of 1ED can be raised in the existence of an extra
source term. For a high-order scheme such as 2ED, the
treatment of the source term is not critical, especially in
the low cell Reynolds number region.

FIG. 7.1. Computational errors without source term. 5.1.2. THE PROBLEM WITH A PIECEWISE LINEAR SOURCE
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FIG. 7.2. Computational errors with different treatment of source term.

TERM. The second test problem considered in the one-
dimensional situation is the high Reynolds number flow 5 2

ax1 1 b
x2

x 1
x1 1 x2

x2
(ax1 1 b) (66)

with a piecewise linear source. This problem was raised
and extensively studied by Leonard [7], 5 0

for 0 # x , x1
R

dF

dx
5

d 2F

dx2 1 S, (65)
for x1 # x , x1 1 x2

for x1 1 x2 # x.
with the following boundary conditions:

The corresponding exact solution can be easily found with
F(0) 5 F(1) 5 0.

some simple algebra. In the present study, the computa-
tional parameters are taken,

The source term is a piecewise linear distribution with
the expression

S(x) 5 ax 1 b

FIG. 8. Computational results for a problem with piecewise linear
source term.FIG. 7.3. Effects of local approximation for source term.
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a 5 22.5R, b 5 1.0R, x1 5 0.6, x2 5 0.2, (67)

and the flow Reynolds number is R 5 106 with the grid
spacing h 5 g;A . The computational results for this problem
are shown in Fig. 8. All the stable higher-order schemes
(2UD and 2ED), as well as the 1ED scheme with piecewise
linear approximation (m 5 2) for the source term, give
very accurate solutions. The QUICK scheme, on the other
hand, displays some severe oscillatory behavior near the
downstream boundary. The 1ED scheme with inappropri-
ate treatment of the source term (m 5 1) yields a distribu-
tion corresponding to an effective cell Reynolds number
Rh 5 2. This phenomenon is due to the huge numerical
diffusion (Rh/2) inherent in the first-order scheme which
can be derived from the TSTE analysis [7].

5.2. Two-Dimensional Problems
FIG. 9. Computational domain, velocity vector and boundary condi-

tion for a two-dimensional test problem.Performances of difference schemes are demonstrated
by solving a scalar transport problem in a two-dimensional
constant velocity field,

5.2.1. CONVECTIVE TRANSPORT WITHOUT PHYSICAL DIF-

FUSIVITY. The first problem considered is a convection
u

F

x
1 v

F

y
5 e S2F

x2 1
2F

y2D, (68) transport without physical diffusivity (e 5 0). The two cell
Reynolds numbers, Rx,h and Ry,h , will become infinity and
the solution will depend on the upstream boundary condi-where u and v are the constant velocity components and
tion only. Figure 9 shows the computational domain, theassumed to be positive, e is the fluid diffusivity. A uniform
velocity vector, and the associated boundary conditions.grid spacing, h 5 f;A , is assigned for both the x and y direc-
The magnitude of the velocity vector and the flow skewtions in the computational region 0 # x # 1 and 0 # y #
angle are1. The cell Reynolds numbers in x- and y-directions, Rx,h

and Ry,h , are defined as
uVu 5 Ïu2 1 v2, u 5 tan21(v/u). (70)

Rx,h 5
uh
e

, Ry,h 5
vh
e

. (69)
The exact solution at any constant-x cross section is a
step-change distribution. This is a benchmark problem to
examine the accuracy of two-dimensional differenceThe starting problem for the higher-order accurate up-

wind difference schemes incorporating more computa- schemes [10, 24]. For the difference schemes considered
in the present study, the first-order upwind differencetional points (QUICK, 2UD, and 2ED) are solved by using

the first-order upwind difference scheme (1UD) at the (1UD) will be identical with the first-order exponential
difference (1ED), the second-order upwind differencecomputational points nearest the upstream boundaries to

initialize the solution procedure. The resulting difference (2UD) will be identical with the second-order exponential
difference (2ED), and the finite analytical method (FA)equations are then solved iteratively by the simple point-

by-point Gauss–Seidel method. The convergence criterion will be identical with the monotonic skew exponential dif-
ference (SKED2) in this limiting situation. Three flow skewis that the total solution error should be less than 1023.

Tighter criteria are also tested and the results show that angles are investigated: u 5 158, u 5 308, and u 5 458. The
computational results, along with the exact solution at x 5this quantity is sufficient to provide convergent solutions.

For nonmonotonic schemes, the results must be underre- 0.5, by various difference schemes for these flow skew
angles are illustrated in Figs. 10.1–10.3.laxed between two successive computations to prevent di-

vergence due to the lack of diagonal dominance in the The 1UD/1ED and FA/SKED2 schemes are monotonic
with all positive influence coefficients and do not producecoefficient matrix. However, if convection transport prob-

lems are considered, there only needs to be a single sweep an oscillatory solution, while the QUICK, 2UD/2ED,
SKUD, and SKED1 schemes suffer from a boundednessto obtain the solution for all difference schemes except

QUICK, which still requires further iterations, owing to problem if there exist abrupt changes in the solution pro-
file. Among these oscillatory schemes, the QUICK schemethe nonvanishing downstream influence coefficients.
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FIG. 10.3. Computational results at u 5 458.FIG. 10.1. Computational results at u 5 158.

calculation. However, this oscillation is confined in thegives a severe wiggle distribution upstream of the change,
regions around sharp gradients in the solution profile. Aswhile this oscillation happens downstream for the other
for the two-dimensional-based difference schemes (SKUDschemes. This can be attributed to the negative influence
and SKED1), the oscillation is not significant if the skewcoefficients of the downstream neighboring node (Ae , 0
angle is not too large (u 5 158 in Fig. 10.1) or near theshown in Fig. 3) for QUICK.
grid diagonal line (u 5 458 in Fig. 10.3). Especially in theFor other schemes, the negative influence coefficients
case of u 5 458, all the two-dimensional-based schemesare mainly associated with the upstream neighboring nodes
(SKUD, SKED1, and FA/SKED2), which satisfy the shift(AWW , 0 for 2UD/2ED shown in Fig. 3 and AS , 0 for
condition, give the exact solution.SKUD and SKED1 shown in Fig. 5). Therefore, although

As shown in Fig. 5, SKUD may yield negative numericalthe 2UD and 2ED schemes possess all positive characteris-
diffusivity if the skew angle is between 258 and 358. There-tic roots in the one-dimensional situation, they may never-
fore, at u 5 308 as shown in Fig. 10.2, the SKUD schemetheless produce oscillatory solutions in multidimensional
produces severe oscillatory results downstream of the
abrupt change in the solution profile. This wiggle contami-
nates all the downstream region. One should avoid adopt-
ing this difference scheme to simulate convection transport
if the skew angle falls within this negative numerical diffu-
sion region. The monotonic schemes (1UD/1ED and FA/
SKED2), armed with sufficient numerical diffusion, damp
out all possible oscillation. The 1UD/1ED scheme signifi-
cantly smears out the solution profile, especially for large
skew angles (u 5 308 in Fig. 10.2 and u 5 458 in Fig. 10.3).
This phenomenon, which incurs the main criticism on first-
order upwind schemes, can be interpreted by the numerical
diffusion depicted in Fig. 5.

We may conclude that the suitable monotonic scheme
to solve multidimensional convective transport problems
is the FA/SKED2 scheme. However, the all positive influ-
ence coefficients requirement as fulfilled by the FA/
SKED2 scheme is only a sufficient condition to ensure
solution monotonicity. In some circumstances, a scheme
with negative influence coefficients may still be capable of

FIG. 10.2. Computational results at u 5 308. predicting a monotonic solution, while a scheme with all
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positive influence coefficients may induce unnecessary nu- minimum amount to avoid an unbounded solution inflicted
by the accurate difference scheme f1 .merical diffusion, smearing out the solution profile around

sharp gradients. That is, the numerical diffusion should be Figure 10.4 illustrates the solution resulting from blend-
ing as compared with those obtained from the originalcontrolled and added only when needed.

Based on this reasoning, we may combine two schemes schemes SKED1 and SKED2. The prediction accuracy is
significantly increased with this simple blending technique.to provide a more accurate and stable approximation of

convective transport: one scheme should be an accurate Therefore, selection of SKED1 and SKED2 to obtain the
blended solution in the present study is quite reasonable.but possible oscillatory scheme and the other should be a

stable diffusive scheme. From the discussion above, the
5.2.2. CONVECTIVE TRANSPORT WITH PHYSICAL DIFFU-obvious choice from the two-dimensional difference

SIVITY. The second problem considered is similar to theschemes for this purpose is the combination of SKED1,
above problem but with physical diffusivity. The cell Reyn-which is an accurate scheme free of numerical diffusion,
olds number will be finite and, in the present calculations,and SKED2, which is a monotonic scheme with minimum
its value is taken as 50,numerical diffusion. A simple but effective blending

method can be obtained based on these ideas,

Rh 5
uVuh

e
5 50. (74)

f 5 gf1 1 (1 2 g)f 2 , (71)

The approximate solution can be found with a similaritywhere f1 and f 2 are obtained from SKED1 and SKED2,
transformation by neglecting the streamwise diffusion [19].respectively. The blending factor g is determined as the
Figures 11.1–11.3 depict the computational results at vari-maximum value to prevent the occurrence of local extrema,
ous flow skew angles of u 5 158, u 5 308, and u 5 458.
These results can be compared with those given in Figs.

fmin # f # fmax , (72)
10.1–10.3 for the previous problem without physical diffu-
sivity. As one can expect, the existence of physical diffusion

where fmin and fmax are the minimum and maximum values will alleviate the steep change in the solution profile and
of a dependent variable at neighboring points. The possible all the difference schemes yield more accurate results. The
value for g is in [0, 1]. This strategy is quite close to existing overshoots and undershoots predicted by oscilla-
the filtering technique such as the flux-corrected transport tory schemes are also decreased. Especially for the SKUD
(FCT) proposed by Boris and Book [35, 36]. The blending scheme at u 5 308 shown in Fig. 11.2, the persistent wiggle
factor can be explicitly determined in terms of the cell distribution in the downstream region disappeared, owing
Reynolds number and values of a dependent variable at to the damping effect introduced from the physical diffusiv-
neighboring computational points. However, in practical ity. This can be found from the numerical diffusion shown
computations, we employ an easier procedure to ensure in Fig. 5.2. However, similar trends can be observed be-
solution monotonicity. Solution of the high-order scheme tween Figs. 11.1–11.3 and Figs. 10.1–10.3, since this prob-
f1 is calculated and checked to satisfy the solution bound- lem is also a convection-dominated one. Identical schemes
edness criterion in Eq. (72). If fmin # f1 # fmax , then f 5 in the limiting pure convection transport (1UD and 1ED,
f1 (g 5 1). But if f1 , fmin then f 5 fmin and if 2UD, and 2ED, and FA and SKED2) are no longer the
f1 . fmax then f 5 fmax . This simpler procedure is equiva- same, due to the existence of physical diffusion.
lent to choosing a maximum blending factor satisfying Eq. Slight variations between these schemes can be found.
(72) and the resulting numerical diffusivity is The exponential difference schemes (1ED and 2ED), with

the convection and diffusion effects simultaneously consid-
GN 5 (1 2 g)GN,SKED2 , (73) ered, can, in general, yield a more accurate prediction than

the upwind difference schemes (1UD and 2UD). As for
FA and SKED2, they will provide an almost identical solu-where GN,SKED2 is the numerical diffusivity for SKED2,

which can be found in Table I. Thus, it is not necessary to tion if the skew angle is not too large (u 5 158 in Fig. 11.1,
and u 5 308 in Fig. 11.2). However, if the velocity directionexplicitly determine the value of blending factor in the

present calculations to find the resulting solution. How- nearly aligns with the grid diagonal line (u 5 458 in Fig.
11.3), the FA method will yield a solution with more nu-ever, its value and the corresponding numerical diffusivity

can be obtained if the resulting solution f, f1 , and f 2 merical diffusion than the SKED2 scheme. One can refer
this phenomenon to the numerical diffusivity shown in Fig.are known. Similar treatment can be found in Sharif and

Busnaina [22], who adopted the SKUD scheme as the 5.3 for FA and Fig. 5.5 for SKED2. Therefore, in terms
of computational efficiency and prediction accuracy, theaccurate scheme to provide the bounded solutions. There-

fore, the numerical diffusion is added sparingly with the SKED2 scheme is proven to be superior to the FA method.
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FIG. 10.4. Computational results with the blending procedure.

The blending procedure given in Eq. (71) is also used Rx,h 5 Af cot(u), Ry,h 5 Af. (75)
to solve this problem and the results are depicted in Fig.
11.4. As compared with pure convection situation shown

The boundary conditions arein Fig. 10.4, it is clear that this blending procedure is still
very effective to raise the computational accuracy.

F(x, 0) 5 F(x, 1) 5 F(1, y) 5 0 (76)5.2.3. THE DIFFUSION DOMINANT PROBLEM. The last
problem to verify the performance of difference schemes
is a diffusion dominant problem with a small cell Reyn- and
olds number,

FIG. 11.1. Computational results at u 5 158. FIG. 11.2. Computational results at u 5 308.
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ment for the convection term. On the other hand, all the
upwind schemes (1UD, 2UD, and SKUD) obviously pro-
vide the computational results with too much numerical
diffusion. It is also quite interesting that the SKUD scheme,
with even less cross-stream numerical diffusion, yields a
less accurate solution than the simple 1UD scheme. This
phenomenon implies that the streamwise numerical diffu-
sion cannot be ignored if the diffusion transport is compa-
rable with the convection. Meanwhile, the exponential
schemes seem to be the suitable candidates to alleviate
this streamwise numerical diffusion.

6. CONCLUSIONS

From the viewpoint of the finite volume formulation,
convective transport is difficult to simulate because the
mass flux flowing out of the control volume will produce
a negative effect on the accumulation of the transported
quantity within the control volume. This is the physical
reason why the upstream difference schemes can yieldFIG. 11.3. Computational results at u 5 458.
stable discretizations. However, the simple upwind scheme
(first-order) cannot provide a sufficiently accurate solution
in practical computations with reasonable grid spacing. On
the other hand, higher-order schemes will inevitably induceF(0, y) 5 F0 exp Fv

2
(y 2 ys)G sin(fy),

oscillatory results if there exist some strong solution gradi-
ents. Mathematically, this problem with an unbounded so-

where lution can be attributed to the numerical dispersive error
of a finite difference scheme with insufficient diffusion to
damp out the undesirable oscillations. Exponential differ-

F0 5
1

sin(fys)
, ys 5 1. 2

1
f

tan21 S2f
v D. ence schemes, which originate from the simultaneous con-

sideration of convection and diffusion effects, are reason-
able candidates to overcome this problem because theThe exact solution can be found by the separation of vari-
exact distribution of the convection–diffusion equation in-ables,
volves some kinds of exponential functions.

In the one-dimensional equation without a source term,
F(x, y) 5

F0

1 2 exp(r2 2 r1)
sin(fy) exp(r2x)

(77)
the simple exponential difference scheme can provide the
exact solution without any oscillation. However, criticism

h1. 2 exp[(r1 2 r2)(x 2 1)]j, on this scheme still remains: its accuracy will decline in
cases of the existence of a nonconstant source term or

where in multidimensional problems. The present work is then
devoted to resolving these problems. First, we derive a

r1 5 As[u 1 Ïu2 1 v2 1 4f2], r2 5 As[u 2 Ïu2 1 v2 1 4f 2]. second-order exponential difference scheme based on one-
dimensional analysis. Exponential functions are intro-
duced to depict the relative importance of influence coeffi-This problem was proposed by Bradley et al. [37] to test

their third-order scheme for convection problems based cients for neighboring points in the resulting difference
equation. Asymptotic properties of this proposed schemeon Taylor-series expansion. Computational results along

with exact solution at x 5 0.5 by various difference schemes are analyzed in the limits of diffusion- and convection-
dominant situations. For diffusion-dominant situations, thefor the skew angles u 5 158, u 5 308, and u 5 458 are

shown in Figs. 12.1–12.3, respectively. As illustrated in second-order exponential difference scheme will become
fourth-order accurate from the Taylor-series truncationthese figures, all the exponential-related difference

schemes (1ED, 2ED, SKED1, SKED2, and FA), which error analysis; while for the convective-dominant situation,
it will be identical with the existing second-order upwindsimultaneously consider the convection–diffusion effects,

as well as the QUICK scheme, yield very accurate solu- difference scheme. The characteristic roots of the differ-
ence equation are all positive for any combination of diffu-tions. The QUICK scheme presents a highly accurate treat-
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FIG. 12.1. Computational results at u 5 158. FIG. 12.2. Computational results at u 5 308.

difference scheme with a nonconstant source term. Wesion and convection transports, which implies that the per-
sistent oscillation problem in the solution will not occur. analyze methematically the deterioration in accuracy of

the exponential difference scheme due to the introductionFrom the numerical experiments, this is a plausible scheme
to provide the difference representation of convection– of a source term and the effectiveness of the local particular

solution method. In this method, the equation is locallydiffusion equation. Meanwhile, the order accuracy of this
scheme will not decrease when there are source terms or transformed to a source-free problem where an accurate

solution can be obtained with the first-order exponentialin multidimensional problems.
The second achievement in the present work is to pro- difference scheme. A general expression for any source

term based on a polynomial fitting procedure is also pro-vide a simple but effective local particular solution method
in recovering the accuracy of the first-order exponential posed to obtain the local particular solution. Performance

FIG. 11.4. Computational results by the blending procedure.



158 YAO-HSIN HWANG

nuities. This blending technique is based on the reasoning
that the numerical diffusion should be added only when
it is truly needed and by the minimum amount to prevent
solution oscillation. Numerical calculations reveal that this
simple modification is quite effective to obtain accurate
and stable solutions in several test problems. Therefore,
we can conclude from the present analyses and numerical
experiments that the exponential difference schemes can
be employed to accurately solve the convection–diffusion
problems. Criticism of their accuracy in the existence of
source term and in multidimensional problems can be alle-
viated. These exponential difference schemes deserve fur-
ther investigations in more complicated situations.

The present study is confined in the steady flow calcula-
tions. As for unsteady flow situations, two simple strategies
can be suggested to treat the transient term by incorporat-
ing the analyses presented here. One is treating the tran-
sient term as a source term and employing the local particu-
lar solution method to derive its appropriate discretized

FIG. 12.3. Computational results at u 5 458. expression. The other method is taking the time derivative
term as a pseudo-spatial dimension without physical diffu-
sivity. Techniques developed in the present work can be
used to find the corresponding exponential difference ap-of this proposed technique is verified by solving several

test problems and the results show that it is quite effective proximation but with an additional dimension. This proce-
dure, as one may expect, will involve more complicatedto increase the prediction accuracy.

For two-dimensional problems, we derive a cross-stream derivations and resulting computations.
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